
J .  Fluid Mech. (1977), vol. 82, part 3 ,  pp .  415-427 

Printed in &eat Britain 

415 

On steady flow in a partially filled rotating cylinder 

By ROGER F. GANS 
Department of Mechanical and Aerospace Sciences, 

University of Rochester, New York 14627 

(Received 4 November 1976) 

The flow in a partially filled cylinder rotating a t  right angles to the earth’s gravity is 
found under the assumptions of rapid rotation and small viscosity. Effects of viscosity, 
nonlinear interaction and finite container length are included. 

1. Introduction 
Flow in a partially filled, horizontally rotating cylinder has been examined both 

experimentally and theoretically by a number of investigators, including Phillips 
(1960), Karweit & Corrsin (1975), Greenspan (1976) and Ruschak & Scriven (1976). 
Motives have been various, including modelling of the generation of suction spots by 
tornadoes (Greenspan) and engineering applications such as cream separators (Ruschak 
& Scriven). 

The physical picture is deceptively simple: a cylinder partly filled with a fluid is spun 
about its symmetry axis sufficiently rapidly that the fluid is held out against the walls 
by the centrifugal force. If the rotation axis is horizontal there is a non-axisymmetric 
force on the fluid. One expects that a simple steady-state (in the laboratory frame) 
motion would result over some range of parameter space, and that one could even con- 
struct some simple stability criterion, relating gravity to the centrifugal force perhaps. 

Those experiments and observations which have been published (Phillips 1960; 
Karweit & Corrsin 1975; Greenspan 1976) indicate that steady-state phenomena are 
often submerged in a welter of time-dependent phenomena. Many of these latter 
phenomena are fascinating: a time-dependent instability noted by Phillips, some 
streaming cell structures noted by Karweit & Corrsin and the generation of vortices 
noted by Greenspan. 

The theoretical work to date has been inadequate for understanding the basis of these 
time-dependent processes. (It seems likely that a full understanding can be gained 
only experimentally, however some further theoretical work is necessary to enable 
one to interpret further experimental work.) Phillips and Ruschak & Scriven address 
linear problems. Greenspan’s analysis is nonlinear in a perturbation sense, and is 
carried to second order in a small amplitude, but it neglects the finite length of the 
container and replaces the free surface by a mobile rigid surface. 

In this paper I account for viscous effects, nonlinear effects and the effects of finite 
container length in an effort to find a steady-state solution which can underlie the 
many observed time-dependent phenomena. To that end I suppose that the Froude 
number @a/g ( =  l/s) is large and the Ekman number v/S2a2 ( =  E )  is small, consider 
an amplitude/boundary-layer combined expansion, and carry that out to O(s2) in the 
axisymmetric part of the solution. 
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The range of parameter space for which the solutions are valid is 

o ~t < &  < E* G C  1, 

where c is the dimensionless radius of the air column. The major conclusions are as 
follows. 

(i) That the air column is offset from the centre an amount Qe( 1 - c2) a (which agrees 
with Phillips 1960) in a direction making an angle - 2(2E)4c2/( 1 -c2) with the vertical 
(a new result), the sense of the displacement being downwards. 

(ii) That the axisymmetric flow in the interior is dominated by a swirl proportional 
to the inverse fifth power of the radius. 

(iii) That steady-state circulations in the interior have mass flux small compared 
with Ee2. 

(iv) That Stewartson (El  and E ) )  layers form on the inner and outer radial 
boundaries, and that there is circulation within the layers. 

The plan of the paper is as follows. Section 2 presents a mathematical formulation, 
of necessity rather long. Section 3 gives the lowest-order solution, the inviscid part 
of which is that found by Phillips. The viscous corrections are new. Section 4 gives the 
rectified (axisymmetric) problem including all the relevant boundary layers end mass 
fluxes. Section 5 gives a brief discussion. 

2. Mathematical formulation 
Let a, b, L, R,, v, p and g denote the outer radius, inner radius, container length, 

basic rotation rate, kinematic viscosity, fluid density and the acceleration of gravity 
respectively. (If V denotes the volume of air in the container, b can be defined as 
b = (V/nL))  in circumstances under which there is no well-defined interface.) 

The governing equations for v and P,  made dimensionless by i2,a and pQa2 
respectively, are 

V ,  + v .VV+ V P  = EV2v +q, (2.1) 

v.v = 0, (2.2) 

where E = v/Qo a2 is an Ekman number, e = q/Q; u is an inverse Froude number and 
y is a unit vector parallel to g. The boundary conditions are those of no slip on the 
solid surfaces and vanishing stress on the free surface.? There is, in addition, a kine- 
matic condition relating the radial velocity to the rate of change of the interface 
location. 

Before proceeding with the rituals of linearization and expansion it is convenient 
to introduce two specific co-ordinate systems. These are shown in figure 1. The Z, jj 
system is centred in the cylinder and will be referred to as the container system. The 
x, y system is centred in the air core and has its origin at a distance 6 from the centre 
of the cylinder. It will be called the core system. 

First-order inviscid theory (Phillips 1980) indicates that the air column is depressed 
in a direction parallel to  y. In  general one should introduce an angle a between the 
vector joining the two origins and y, making y = - cosaj +Sinai. The dimensionless 
radius of the air core is c = b/a. 

Because the relationship between the two systems is a simple translation, the 
Cartesian unit vectors i ,  j and k are the same in both, and the Cartesian components 

t Perhaps a stringent condition for real fluids, but a reasonable limit. 
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FIGURE 1. Sketch of the core and container co-ordinates. 

of velocity must be the same. It is, however, more convenient to work in cylindrical 
co-ordinates defined by 

x = wcos#, y = as in# ,  z = .Escos$, ij = Gsin$. (2.3) 

The velocity and pressure will be written in core co-ordinates as 
A 

1 v = wQ,+u, 

P = Po+&(w2-c2)+Ey.r+p, 

where Po is the intynal pressure at  the interface, a constant. Note that the solid 
rotation assumed (4 is an azimuthal unit vector) is not solid corotation, but rotation 
about the core axis. 

The same quantities will be written in container co-ordinates as - 

I V = a$+ii, 
P = P o + ~ ( E 2 - c 2 ) + € y . f + z ) .  

The governing equations are of the same form in both systems, namely 

u * + u ~ + ~ ~ x u + u . V U + V ~  = EV2u, 
v.u  = 0. 

( 2 . 6 ~ )  

(2.6b) 
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(In both equations u+ means partial derivatives of the vector components only; it is 
the time derivative in a rotating co-ordinate system.) However, the boundary con- 
ditions are not identical. 

The boundaries relevant to the core co-ordinate expressions are z = f L/2a ( = k A )  
and w = c + y. The quantity y represents motion of the free surface away from its 
equilibrium position. The no-slip condition on the end plates is 

which can be broken into a normal part 

and a tangential part - 

w = k.u = 0 
- 

. k x k x u + w c $  = w$. 

On the free surface there is a kinematic condition 

6 . u  = u = Dy/Dt = y t + y + + u . V y ,  (2.10) 

p + c y + i y 2 + e y . r  = 0, (2.11) 
a pressure condition 

and a no-shear-stress condition 
1 V 

w,+uz = 0 = -u +urn--* W m 4  
(2.12) 

Conditions (2.8), (2.10) and (2.11) must be satisfied by any inviscid solution; a viscous 
solution must satisfy (2.9) and (2.12) as well. 

The boundaries relevant to the container co-ordinates are X ( = z)  = & h and i5 = 1, 
on which the same boundary condition is to be satisfied: 

a = 0. (2.13) 

This can be split into normal and tangential parts in an obvious fashion. 
Matching of the two representations of the solution will be done away from any 

of the boundaries. The solution process is such that the relevant equations away 
from the various boundaries remain the inviscid ( E  -+ 0) equations, so that one is to 
match the Cartesian velocity components. 

Matching is not a unique process. A simple method is based on the assertion that 
u and U, say, both represent the same function, much as one would do in matching 
inner and outer expansions in a formal asymptotic matching procedure. Here all that 
is necessary is to expand the true solution in a Taylor series around the point (x, y) 
and to note that @above and 48 below the point one will obtain U and u representations 
at  the same numerical values of m, G and q5, $. 

Let $(x, y) denote the true quantity to be matched at  some physical point (x, y). 
At points +IS above and below, the physical quantity can be approximated as 

(2.14) $(x, Y f $8) = $(x, Y) k $&, Y) x as + $yy(x, Y) x i d 2  + . * * 9 

and the difference between these two expressions gives 

$(x, Y + 48) - $(x, Y - as, = $&, Y) a+ W3). (2.15) 

Making use of an additional Taylor approximation for the first partial derivative 
then gives 

$@, Y + 48) - $(., Y - 48) = W&, Y + 48) + $&, Y - is11 8 + W3). (2.16) 
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If the point (2, y) is midway between two points defined by m = i5, # = 5, then 
+(x, y++S)  = +(r,O) and $(x, y-46) = $(r ,O),  so that (2.16) expresses a matching 
condition on expressions in core and container co-ordinates evaluated a t  the same 
numerical values of their respective arguments. In  terms of the cylindrical com- 
ponents of velocity, using ( r ,  0) to stand for either (a, 4) or (B, 5) as appropriate, the 
matching conditions are 

(2.17) 

1 
r 

1 
r 

u-B = ( u + i i ) - - c o s ~ ( v + ~ )  

(v+v)+-cosO(u+;iE) 

The question of linearization is not straightforward. In  the laboratory both e and 
E are small, and one must specify what range of parameter space is wanted before one 
can chose an expansion procedure. Even this proves inadequate for this problem 
because of the additional degree of freedom provided by the free surface. (This pheno- 
menon is a minor theme of this paper and the reader is asked to be patient. A full 
exposition appears in 8 4.) 

One way to decompose the problem is in terms of azimuthal dependence. The 
equations are of constant-coefficient type in 4 (5) and one could take a Fourier trans- 
form, or perhaps, more simply, keep track of the rectified, singly periodic, etc., 
components of the system. These will be coupled because of the nonlinearities in the 
system, but approximate solutions can be obtained by making appropriate assump- 
tions (which limit the range of validity of the solution) regarding e and E .  

The dependent variables will be written as 

@ = g @.'"', (2.18) 

where the index represents the azimuthal wavenumber. It does not necessarily rep- 
resent an order, or imply a magnitude. 

The only explicit inhomogeneity in the problem is ey . r, which is singly periodic 
in the azimuthal co-ordinate. Thus the singly periodic problem is the logical place to 
begin, and the assertion that u(l) = O(s)  is not unreasonable. A simple inviscid solution 
plus its boundary-layer corrections is not adequate. Because I shall calculate forced 
rectified flows I need the leading non-zero components of the nonlinear terms, which 
will be 

n=O 

The phase relations are such that the azimuthal component of this term in the interior 
is zero if one retains only the linear inviscid (Phillips) solution. Additional terms arise 
from interactions between the Phillips solution and the corrections to the Phillips 
solution required by boundary-layer sections. These terms will be O(e2Et)  and will 
dominate the next largest terms, which are O(e4), if@ < E*. They too prove to be zero. 

The entire problem can be solved at once, rather in the manner of applying an 
Ekman matching condition. One can find solutions independent of z and singly 
periodic in 4. The outer solution satisfies no-slip conditions on 8 = 1 and matches the 
inner solution in the interior. The interior solution satisfies the no-stress condition, 
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and a kinematic condition, on the free surface. The latter conditions are modified by 
the demand that r](l) be identically zero. The result is ten boundary conditions deter- 
mining the eight arbitrary constants in the solutions to the differential equations, as 
well as 6 and a, in terms of E and E .  

The singly periodic problem is taken up in $ 3  below. Section 4 includes the axi- 
symmetric part. Section 5 summarizes the results. 

3. The singly periodic solution 
The largest contribution to the singly periodic nonlinear term arises from interac- 

tions between the largest singly periodic term and the largest axisymmetric (or 
doubly periodic) term. Such a term will be O(e3). As the solution I shall find is to be 
valid only to O(eEJ), by hypothesis larger, it is justifiable to consider the singly 
periodic problem as a linear one. Within this section the parenthetical superscript is 
suppressed in the interest of neatness. 

The appropriate linearized equations can be written in component form as 

u$- 2v +pm = EDu, ) 

I V$ + 2~ + m-1~9 = EDv, 

pa = EAw, 
a-l(au), + a-%$ + wa = 0,) 

where D = A -  l/a2 and A is the scalar Laplacian. The form of the equations is the 
same in both co-ordinate systems. 

constants in each co-ordinate system: 

- 

Inviscid (E+O) solutions to these equations may be written 

p = (A,  a + BJa) sin q5 + (A,  a + BJw) cos q5, 

v = @A, -3,/a2) sin q5 + Q(3A, - B,/a2) cos $, 

u = -1 , ( 3 4  + Bs/a2) cos q5 + &(3A,  + B,/a2) sin $, 

in terms of four 

( 3 . 2 ~ )  

(3 .2b )  

( 3 . 2 ~ )  

in core co-ordinates, the expressions in container co-ordinates being identical, with 
the addition of overbars. 

The expressions (3 .2 )  satisfy the normal boundary conditions on the end walls z = 5 h 
by virtue of the identical vanishing of any axial component. The boundary layers 
required to satisfy no-slip conditions are non-divergent, as they cancel a non-divergent 
two-dimensional flow. Those boundary layers, therefore, do not contribute to the 
determination of the constants, and I shall write them down after I have determined 
the constants. 

The radial boundary-layer equations are very simple (cf. Gans 1970): 

i76 = EZmm. 
No i!j is required, and C is found from 

G, i- a-%$ = 0. 

The general solution to (3 .3 )  can be written on a = c as 

C - - a  + +) +Bsin (- C - C J  +$)I 
( 2 E P  

(3 .5 )  
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and on 67 = 1 as 

The boundary conditions are vanishing shear on w = c, i.e. 

and no-slip on ?J = 1, i.e. 
v" ,+v ,+c -~u~-c -~v  = 0, 

%+v = 0. 

After some algebra one obtains the boundary-layer constants in terms of the 

A = -*(3AC-Bc), B = -&(3As-Bs)y (3.9a, b) 
c= interior constants: - - 

1 A= WE)S , ( A , + ~ s ) + F j ( ~ c + B s ~ ] y  (3.9c) F3 
[e" c3 

(3 .94 I 1 B = 4(2E)* -(A,-A,)+-(B,-B,) . 
Direct integration of (3.4), using (3.4, (3.6) and (3.9), gives boundary values of the 

radial velocity associated with the boundary layers. These are 
- 

ar=l = - &( 2E)t [3(& - 2,) - (B, - B,)] sin 3 + +( 2E)t [3(& +A,) - (B, + B,)] cos 
(3.10) 

and (3.11) 

A 'closed' problem consists of applying boundary and matching conditions to the 
general solutions given. Zero tangential velocity and stress on i5 = 1 and w = c 
respectively have been satisfied. There remain the conditions of vanishing normal 
velocity on E = 1 and w = c (a consequence of ~ ( l )  = 0) ,  i.e. 

32, + B, - (2E)f [3(& +As) - (B, + B,)] = 0, ( 3 . 1 2 ~ )  

32, + B, - (2E)* [3(.Ac - 2,) - (B, - B,)] = 0, f3.12b) 

2E 

B pressure boundary condition (with q(l) = O ) ,  i.e. 

A, + c - ~  B, = E cos 01, 

A, + 6-2 B, = E sin 01, 

(3.13~) 

(3.13 b) 

(3.14a) 

(3.14b) 

and the matching conditions one can derive from (2.17). 
The only non-zero matching term on the right-hand side of (2.17) will come from 

the basic rotations. Other terms with the appropriate symmetries are O(e3) and must 
be neglected to be consistent with the Taylor expansion on which (2.17) is based. It 
happens that 6 = O ( E ) ,  so that such terms should also be neglected to the order to 
which this segment of the problem is being worked. The matching conditions are then 

U-ii = 6cos6, V - - v  = -&sine, (3.15) 



422 R. F.  Cans 

which can be rewritten as the four conditions 
- - - 

A , - A , =  -6, B,-B, = 0, A,-& = 0, Bc-B, = 0. (3.16) 

The solution procedure is Straightforward. Equations (3.16) eliminate the barred 
constants. Equations (3.13) are a pair of homogeneous algebraic equations for the 
quantities in parentheses. The determinant does not vanish (it equals 1 + 4E2/c* > 0) 
so the parenthetical quantities must vanish, which allows the elimination of the B’s. 
Substitution into (3.14) gives the A’s in terms of 6 and a. Substitution into (3.12) 
gives the pair of equations 

[1-(2E)4]6 = -+e{(2E)t(l  +c2) (sina+cosa)-(l  -@)cosa}, (3.17) 

(2E)J 6 = - &(2E)4 {( 1 + c2) (sina - cos a) - (1 - c2) sina}. (3.18) 

Neglecting sin a compared with cos a and E4 compared with unity makes it possible 
tosolve (3.17)for6and(3.18)fortana.Tobeconsistentonemustputtana: = sina = u 
and COB a = 1.  One then has 

s =  &(l-c2), a = -2(2E)tc2/(1-c2), (3.19) 

and, to the order of approximation appropriate, 

(3.20) I 
- 

A, = -is, A, = -#€c2, 

B, = $c2€, B, = $c2€, 

A,  = c 2 ~ ( 2 E ) t / (  1 - c2), 

B, = - 3c48(2E)t/( 1 - c2), 

A, = c2e(2E)4/( 1 - c2), 

Bc = - 3c4€(2E)t/( 1 - c’). 

The velocity components in the interior are 

(3.21) 

cos9+(2E) ta i ( l -~ ) s in9 ,  C2 

sin$+(2E)&€- 1 -c2 c2 ( l + $ ) C O S q 5 ,  

1 - c  

(3.22) 

The first terms on the right-hand sides agree with Yhillips’ solution; the second terms 
give a viscous correction. 

It is a straightforward matter to apply the no-slip boundary conditions on the end 
walls at  this point. The governing differential equations can be taken directly from 
Gans (1970) and the solutions which cancel the contributions from (3.21) and (3.22) are 

€C2 C2 3*(2 - h) sin [ 34(2 - h) + $1 
PEP 

+ (2E)t- -exp ~ 

l - c 2 m 2  (2E)4 ’ (3.23) 
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(2E)fsin [ (2E)a ++] +ie2exp 
v" = &c2 exp- 

€C2 2-h h - z  
- (2E)+-exp- I -c2 (2E)tCoS [m+#] 

423 

(3.24) 

The expressions in container co-ordinates are identical; one needs merely to replace 
(w, +) by (G, $). It is straightforward matter to show that (3.23) and (3.24) represent 
the solution on x = - h upon replacement of h - x by z + A .  As stated above V .ii = 0. 

4. The axisymmetric problem 
The interior and the Ekman layers 

The governing differential equations are just the azimuthally averaged full equations 
with the nonlinear term truncated as in 5 2 above, namely 

u . vu z u(1) . VU(1). 

These may be written as 

(4.1a) 

(4 .1b )  

(4 .1~)  

[wu(O)], +wwip) = 0. (4.ld) 

In  the interior the right-hand sides of (4.1~-c) are to be calculated using the velo- 
cities given by (3.21) or (3.22). The resulting nonlinear term will have components 
which are O(s2),  O(E+e2) and O(Es2). What is desired is the leading non-zero term in 
each equation. For the radial equation this term is the one that would be calculated 
from Phillips' solution, - e2c4/2w5. All three contributions vanish in the azimuthal 
direction. Thus the interior radial velocity must be small compared with Ee2, which 
I shall replace by zero in writing the interior version of (4.1). 

- 2vCO) +pE) = EDu(0) - Q . ~ ( 1 )  . vu(1), 

2u(O) = EL)VCO) - 4 . u(1) . V@, 

pL0) = EAwW - 2 . ~ ( 1 )  . Vu(1), 

Keeping only the leading terms in the interior version of (4.1) gives 

in both co-ordinate systems. The solution is 

where d o )  can be any function of the radial co-ordinate. 
The inviscid problem cannnot determine do). It is determined by a global mass 

balance criterion, which is equivalent to requiring the Ekman layers on 2 = & h to be 
non-divergent. To proceed one must solve an inhomogeneous Ekman-layer problem. 

The right-hand side of the boundary-layer momentum equation has non-zero 
azimuthal as well as radial components. However, because of the cross-coupling 
made possible by the non-vanishing viscous terms, it is not necessary to retain the 
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leading non-zero term in both equations. The radial interaction is O(e2) and the 
azimuthal O(E@), so the latter can be neglected in comparison with the former, 
making the relevant equations 

S2C4 [ 2 X 33(2 - h )  33(2 - A )  34(2 - A ) ]  ,} - 2 cos- 
(2E)t (2E)t 

- 2v(O) - EGZ) = - 
2w5 exp ( Z E ~  

24(0) - EG(0) 
22 0, 

and the general solution can be written as 

E t  
2 - h  . 2 - A  €2C4 2-h  2 - h  

G(0) = ~ ( 0 )  exp - E+ sin - Et + - 20wS(exp-jg [ 3 c o s T - i 7 s i n -  

2 X 3*(Z-h) 34(2-h) . 3*(2-h)) 
(2E)J 'In- (2E)t ' - 3 exp + 24 exp 

Et 
2 - h  2 - h  €264 2 -- A 2-h  

GO) = - v(O)exp- cos - +- [ exp [ 17 c o s x  + 3 sin- 

34(2 - h)  

E t  ~t 2 0 ~ 5  

2 x 33(2 - h )  3)(2 - h)  - 16exp- (2E)+ (2E)t  'OS (2E) t  ) '  - exp 

The same result, with h - x replaced by h + z, ia obtained on z = - A. 
In  the steady state the mass within any fixed volume must be constant, or, equi- 

valently, the total flux across any fixed surface must be zero. The mass flux across the 
surface w = r is given by 

/ o z n / ~ A u ~ , r ) r d ~ d z ,  (4.7) 

where u ( r )  is the radial component of the velocity. The integration with respect to g5 
is equivalent to the averaging process, so that 

u ( r )  r d# dz = 2nr 

and the leading term of u(O)(r) is the boundary-layer part; the discussion above has 
established that the interior mass transport is less than Ec2, while the boundary-layer 
mass transport can be O(Ek2) .  

Insertion of (4.5) (and its mirror image on z = - A )  into (4.8) and subsequent 
integration determines the interior azimuthal velocity profile : 

do)=--&( ~~6~ 27(#)t 2o - 20 ). 
(4.9) 

Here the numerical factor in brackets is 0.102270384 ... ; where convenient it will 
be denoted by N .  

It should be noted that the vanishing of the mass flux in the boundary layers is a 
more stringent requirement than asking that the divergence from the Ekman layers 
be zero. The latter requirement permits an additional potential vortex flow in the 
interior, however the mass flux criteria show that this vortex must be small compared 
with E8e2, so that the mass transported will be small compared with Ee2. 
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The side walls 

Both the outer (a = 1) and the inner (a = c) interface is a side wall for the axi- 
symmetric problem, and the usual set of Stewartson layers (Stewartson 1958; see 
also Greenspan 1968, 52.19) with dimensionless thicknesses Ef and E* are to be 
expected. Some novelties arise because of the free surface and primary attention will 
be directed towards these. 

The governing equations for the side-wall layers are those given in Greenspan’s 
book, with the addition of an inhomogeneous term in the radial momentum equation. 
This term is a function of w (or 67) only and can be balanced by a pressure term. Thus, 
for calculation of velocities the usual homogeneous boundary-layer equations are 
adequate. In  component form 

(4.10) 

The solutions to (4.10) are the Stewartson layers. They are required to satisfy 
no-slip conditions on iF = 1 and no-shear conditions on w = c, as well as having axial 
transport small compared with Ee2, a condition imposed by the inability of the Ekman 
layer to accept the transport. 

The form of the solutions is the same on both boundaries. On the inner boundary 

(4.l lb) 

G(0) = By: EW, z exp yo(c - a) 
nnz + C [W,lex~yn,(c-’(iT)-Wnzexpyn,(c-~)-Wn3expyn,(c-a)] sin- 

n= 1 A ’  
(4.1 1 c) 

where 
yo = (hZE)-f, ynl = (AE/2nn)-f, ynz = e#irynl, yn3 = e-+in Yn1, (4.12) 

and W, and the Wni are constants. 
These equations have been derived under the same general assumptions as those in 

0 2.19 of Greenspan’s book, and are the axisymmetric equivalent, with the origin of 
z and the Ekman number suitably redefined, of the equations he gives. By choosing 
the form (4.1 l),  the differential equations and the Ekman compatibility condition 
have been satisfied, and the solutions decay exponentially away from the free surface. 
A very similar set of equations can be written down for the outer wall. 

The boundary conditions are that the shear on the interface vanishes and that there 
be no flux out of these boundary layers at their ends. The latter condition can be made 
more stringent. As there is no interior radial velocity, one can demand that the axial 
mass flux be zero at  any axial position. This is physically equivalent to asking that the 
radial velocity component should vanish at the edge of the boundary layer. 

The azimuthal shear condition is divided into two by its z dependence, i.e. 

yoW0 = 6Ne2/c2, ( 4 . 1 3 ~ )  

(4.13 b) ~ n l  WnI + ~ n 2  Wn, + Yns Wa = 0; 
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the axial shear condition is 

the mass flux condition is 

(4.15) 

Equations (4.14) and (4.15) are solved by a Fourier decomposition. While one's 
intuition is that this process may be in conflict with the basis boundary-layer assump- 
tion, R. Whiting (private communication) has calculated some of the resulting series 
and finds then to be slowly varying functions of z. 

Solution of (4.13)-(4.15), retaining in all cases only the leading terms, gives 

I W, - ~N(A'E)~E~/C~  = O(Eh?). 

(4.16) 

where rn = ( A  cos nn)/nn, and the neglected terms are factors of Ei  smaller. 
The azimuthal velocity in the boundary layer is small compared with that in the 

interior; this is to be expected when one is balancing stresses. The axial velocity is of 
some interest. It is of magnitude E@ in the Ei  layer and Ede2 in the E* layer. The 
flux in each layer is thus E@, and must cancel. There is a circulation within the 
double Stewartson structure: towards the end plates in the Ea layer and returning 
in the E* layer. 

5. Discussion 
The basic features of the flow I have calculated are quickly summarized. There is a 

non-axisymmetric interior circulation which has the net effect of displacing the air 
column a distance O ( E )  down and a distance O(Ets)  in the direction k x g. Associated 
with the offset are various shearing motions against the boundaries and interior 
advections of momentum. The major effect of these is to induce an interior swirl 
velocity proportional to the inverse fifth power of the radius. There is no axisymmetric 
pumping in the interior, but there is circulation within and between the two Stewartson 
layers on the radial boundaries. 

I have been unable to find in the literature experimental data with which to make 
comparisons. The only data on retrograde rotation are those given by Greenspan 
(1976) for a rigid straw. From his figure 4 it appears that typical retrograde rotation 
rates are 10-20 yo of the basic rotation rate for c in the range 0.025-0.053. Equation 
(4.9) of this paper gives retrograde rotation rates of Na2,  where 01 = s/c. [By retro- 
grade rotation I mean the difference between the observed rotation of the interface 
and the actual rotation of the container. In Greenspan's dimensional notation this is 
!2 - R, and the comparison should be between Greenspan's (!2 - !2,)/!2 and this 
paper's dO)/c, calculated from (4.9) .] Greenspan's observations appear to lie between 
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his theoretical curves, which ignore end effects, and mine, which assume a different 
interface condition. 

Phillips’ physical instability criterion, that the radial pressure gradient reverses 
sign, is surely a sufficient condition for instability. The radial component of the 
momentum equation can be ‘solved’ for the radial pressure gradient, and its minimum 
value, obtained at  4 = &r, is 

rninli3p/awl = c-3g-+(2N+l)s2/c.  (5.1) 

0 = Q[1-3a- i (2N+l)a2] .  (6.2) 

In  terms of Greenspan’s a ( = B/c ) ,  the critical p ,  = 0 condition can be written as 

This criterion reduces to a = 4 in the linear (Phillips) case and a = 0.314 in the case 
considered here. 

I am grateful to my colleagues in GFD a t  the University of Rochester for listening 
to my ideas as this work grew: in particular, A. Clark, Jr, J. Molyneux, J. Thomas and 
R. Whiting. This work has been supported by the Atmospheric Research Section of 
the National Science Foundation. 
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